INFLUENCE OF VORTEX-TUBE CONFIGURATION AND
LENGTH ON THE PROCESS OF ENERGETIC GAS SEPARATION

Yu. D. Raiskii and L. E. Tunkel? i UDC 533.697

Results are presented of an experimental investigation of cylindrical, diffusor, and step
vortex tubes. It is shown that long cylindrical tubes are most effective in a broad range of
variation of structural and modal parameters.

No standard viewpoint on the influence of vortex-tube length and configuration on the magnitude of
temperature gas separation yet exists in the extensive literature devoted to the vortex effect (the Ranque
effect). The determination of the mentioned dependences is essential to a study of the mechanism of vortex
temperature separation and of practical recommendations for the use of vortex tubes in a number of
branches of industry (refrigeration, gas, aviation, etec.).

Hilsch [1], and afterwards Martynovskii and Alekseev [2], who investigated cylindrical vortex tubes,
recommend Lopt = Ly = 50D, as the optimal (thermodynamically most effective) vortex-tube length. Merku-
lov [3], who mounted a rectifying crosspiece in a vortex tube, obtained Lopt = 9D,. The influence of the
rectifier on the diminution of Lopt was also noted by Metenin [4]. Hendal [5] proposed the use of diffusor
(o = 2-5°) vortex tubes with a small conical and long cylindrical section to increase the efficiency of tem-
perature gas separation. Gulyaev [6], Metenin [7], Borisenko, et al. [8], who investigated conical vortex
tubes, indicate that their thermodynamical efficiency is greater than the efficiency of cylindrical tubes.
However, an opposite viewpoint exists. Thus, the authors of [2] remark that long cylindrical tubes are
more éfficient as compared with diffusor and confusor tubes.

Results are presented in this paper of an experimental investigation of the influence of the vortex-
tube length and configuration on the vortex-temperature gas-separation process. The air after the com~
pressor in the experimental setup was dried by silica gel and directed by the entrance nozzles of the vortex
tube. The air pressure at the entrance to the vortex tube was regulated by a gate valve. From the vortex
tube the cooled and heated air stream was directed to the flowmeter and then ejected into the atmosphere.
A change in the relationship between the cold and hot stream discharges was accomplished by the conical
valve of the vortex tube.

The pressure, temperature, and discharge of these two streams were measured during the experi-
ments. The total pressure and stagnation temperature of the gas were measured in tanks at the entrance
to the vortex tube, at the "cold" and "hot" ends of the vortex tube, and at the appropriate flowmeters.

The "cold" and "hot" tanks were manufactured from ebonite to diminish the heat losses and were
washed externally by the emerging air streams. The air pressure was measured by standard manometers.
The air temperature was measured by copper —constantan thermocouples, whose "zero" junction was
placed in melting ice. A PP-63 potentiometer was used to record the thermocouple readings. The thermo-
couples were calibrated before performing the experiments. The air temperature was measured to £0.2°C
accuracy. The air discharge was determined by using a diaphragm differential manometer filled with water.
The accuracy of measuring the discharge was +1.5%.

Also measured during the experiments was the static pressure within the vortex tube at the emergence
of the air from the entrance nozzles, which permitted a judgment about the presence of the critical escape
mode. '

Soyuzgazoavtomatika, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 27, No. 6,
pp. 1128-1133, December, 1974. Original article submitted March 14, 1974.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

1578



Lo

123
—

e | __F,/m \/%:70
1~ — P
20D, 8330y
wn_ |© P, ®

Fig. 1. Configuration of the vortex tubes tested.

The experiments were conducted with ebonite cylindrical and diffusor vortex tubes whose configura-
tion is presented in Fig. 1. The diameter of the initial section of all the vortex tubes studied is Dy = 10
mm. The air was supplied through two rectangular tangential nozzles, whose total area S was 5.55 mm
(w = 0.071)., The cooled stream was removed through a diaphragm with a d = 5-mm (§ = 0.5)-diameter
hole.

2

Six cylindrical tubes (Fig. 14) of different lengths, L, = 5Dy, 10Dy, 20D, 30Dy, 40D, and 50D, and
a cylindrical vortex tube of length L, = 40D, with a crosspiece which could be mounted at various distances
L; from the initial section of the vortex fube, were tested. Moreover, step cylindrical tubes of the con-
figurations C and D were tested.

The diffusor vortex tubes consisted of a diffusor part of length L and a following cylindrical diffusor
section, The total length of the diffusor and cylindrical sections was 40D,. Diffusor vortex tubes with the
apertures o = 2°, 3°48', 5°, and 7° were studied. The length L('] of the diffusor part was varied in the
experiments and there was the possibility of moving the crosspieces to different lengths Ly in the diffusor
tube with o = 3°48' and Lj = 2.5D,.

In conclusion, vortex tubes of variable configuration (types E and G) were tested.

Experiments with cylindrical vortex tubes showed that a change in vortex tube length from 50D, to
20D, does not influence the magnitude of the vortex effect. A further diminution in the length L, results
in a sharp reduction of the temperature differences. Presented in Fig. 2 are the most characteristic of
the results obtained, and in Fig. 3 (the G; /G, = 0.5 mode) the dependence AT, —L, in the whole range of
vortex-tube lengths studied.

Also shown in Fig. 3 is the change in the temperature differences for a displacement of the rectifying
crosspiece in the cylindrical and diffusor vortex tube. It is clearly seen that the change in distance I
noticeably influences the magnitude of the vortex effect only in the initial section of the vortex tube. More-
over, a comparison between the thermodynamic efficiency of short (L, < 20D;) and long (L, = 40D;) vortex
tubes with a limiter crosspiece demonstrates the explicit advantage of the latter (for L, = Ly = idem).

Represented in Figs. 4 and 5 are the results of tests of diffusor vortex tubes. An analysis of Fig. 4
shows that diffusor vortex tubes are less efficient in a broad range of variation of the modal and structural
parameters, than are long cylindrical tubes. When the diffusor aperture is small {o = 2~3°%), the thermo-
dynamic efficiency of the diffusor and cylindrical tubes are commensurate for large L,. As the cone
aperture increases further (to o = 5-7°) an abrupt reduction in the vortex effect sets in. The curves in
Figs. 4 and 5 are recorded for Gy /G = 0.5.

The influence of a change in the length Lj of the conical section of diffusor vortex tubes on the value
of the vortex effect was also studied. It is seen from Fig. 5 that as the length of the diffusor diminishes,
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Fig, 2. Influence of vortex-tube length on the magnitude of the temperature differ-
ences ATy (Py/ Py = 3): 1-3) cylindrical tube; 1) Ly = 40Dg; 2) 10Dy; 3) 5D¢; 4) diffusor
tube Ly = 5Dy, Ly = 2.5D,, o = 3°48',

Fig. 3..Influence of the vortex-tube length on the magnitude of the temperature dif-
fe\rences ATy (G /Gy = 0.5, Py/ Py = 3): 1) dependence on L,, cylindrical tube; 2) de-
pendence on Ly, cylindrical tube; 3) dependence on L, diffusor tube o = 3°48', L(')
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Fig. 4 Fig. 5

Fig. 4. Influence of the diffusor aperture angle on the magnitude of the
temperature differences AT; (G /G, = 0.5, L{ = 10Dy): 1) P,/ P; = 3;
2) 5.

Fig. 5. Influence of the length L of the diffusor section of a vortex tube
(configuration B) on the magnitude of the temperature differences AT,
Gy /Gy = 0.5, Ly=40Dy): 1-4) Py /Py = 3; 5-8) 53 1) o = 3°48'; 2) 5° 3)
7°; 4) cylindrical tube; 5) o = 3°48"; 6) 5° 7) 7°; 8) cylindrical tube.

the magnitude of the temperature differences increases, approaching values obtained in tests of cylindrical
vortex tubes,

Shown in Fig. 6 are the results of experiments with diffusor vortex tubes and with tubes with the
configurations of type C and D. The points of curve.l indicate the invariability of the magnitude of the
vortex effect for a sharp step expansion of the helical stream which has first passed through a 20-caliber-
long cylindrical part of the vortex tube., Conversely, a step expansion of the cylindrical section of the
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Fig. 6. Dependence of the tem-
perature difference AT on the
ratio Dy /D Gy /Gy = 0.5; P,/ Py
= 3): 1) configuration C; 2) dif-
fusor tube « = 3°48'"; 3, 4) diffu-
sor tube o = 5 and 7°; 5) config-
uration D; 6) cylindrical tube,
configuration A,

vortex tube near its initial section results in an abrupt reduction
in the vortex effect which will be greater, the greater the diameter
D of the expanded section {curve 5).

It should be noted, however, that an abrupt expansion of the
vortex tube behind a relatively small section with fixed geometry
does not result in an essential change in the magnitude of the vortex
effect. Thus, the difference in the quantity AT, for configuration A
(Lg = 40D;) and E is ~5% in the G; /Gy = 0.5 mode, and is G ~ 12%
for B and G.

Therefore, the most thermodynamically efficient are long
(Lg = 20) cylindrical vortex tubes. As the absolute length of the
vortex tube (Ly < 20Dy} diminishes, the vortex effect is reduced
sharply. Experiments carried out with a displaceable crosspiece
in a long cylindrical tube showed that the main heat-transfer pro-
cesses occur in the first 3-5 calibers of the vortex tube.

Diffusor vortex tubes are less efficient than long cylindrical
tubes in a broad range of variation of the modal and structural
parameters, The thermodynamic efficiency of conical and cylindri-
cal tubes are commensurate for a small diffusor angle (o = 2-3°);

a sharp reduction in the vortex effect sets in for diffusor aperture
angles, o >5°.

The efficiency of diffusor vortex tubes grows as the length of the conical section diminishes (for

o = const).

These deductions explicitly contradict the results presented in {5-8]. The explanation should be
sought in the fact that the diffusor vortex tubes in the papers mentioned were compared with short cylindri-
cal tubes (L, < 20D;), and as has been shown above, short cylindrical tubes are substantially less efficient

than long tubes with Ly = 20D,.

NOTATION
L, is the total vortex-tube length;
Ly is the length of the diffusor part of the vortex tube;
Iy is the distance from the initial section of the vortex tube to the crosspiece;
Dy is the diameter of the initial section of the vortex tube;
o is the diffusor aperture angle;
S is the cross-sectional area of the entrance nozzles;
w = 4s / D} is the dimensionless area of the entrance nozzle's cross section;
d is the diameter of the vortex tube diaphragm hole;
6=d/Dy is the dimensionless diameter of the vortex tube diaphragm hole;
Gy is the mass flow rate of air through the vortex tube nozzle;
Gy is the mass flow rate of the cold air stream removed through the diaphragm hole;
P,/ Py is the ratio between the total air pressure at the entrance to the vortex tube Py and the
total air pressure at the exit from the diaphragm Py;
ATy =Ty-T, is the difference in temperature of air supplied to the vortex tube and the cooled air

removed through the diaphragm hole.
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